Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Comorbid conditions in ischemic heart disease: pathogenetic interconnections, clinical risks, and consequences K

Authors: Mamalyga M.L.

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2025-22-1-5-20

UDC: 616.12-008.46

Link: Clinical Physiology of Blood Circulaiton. 2025; 22 (1): 5-20

Quote as: Mamalyga M.L. Comorbid conditions in ischemic heart disease: pathogenetic interconnections, clinical risks, and consequences. Clinical Physiology of Circulation. 2025; 22 (1): 5–20 (in Russ.). DOI: 10.24022/1814-6910-2025-22-1-5-20

Received / Accepted:  21.01.2025 / 31.01.2025

Full text:
Subscribe 🔒

Abstract

The review presents a detailed analysis of the results of clinical studies devoted to the study of the pathogenetic mechanisms underlying the relationship between congenital heart disease (CHD) and comorbid conditions, which currently remain largely poorly understood. The publication is aimed at informing practitioners about the features of the manifestation of comorbid disorders in CHD, as well as about the mechanisms of development that provoke them. The relevance of the problem is obvious, but many aspects of the relationship between CHD and comorbid conditions require further fundamental study, which is necessary for the development and implementation of innovative methods of diagnosis and treatment of diseases. When planning a strategy for the treatment of CHD and prescribing cardiotherapy, it is important to take into account that elderly patients are most at risk of developing comorbid diseases, in which the predisposition to cardiovascular diseases increases with age, which is aggravated by the presence of concomitant pathologies. Systematic analysis of research is aimed at developing a holistic understanding of the pathological mechanisms underlying the relationship between CHD and comorbid conditions. The results of the study are intended to contribute to the development of new strategies for timely diagnosis, prevention and personalized treatment of such patients. This is especially important for optimizing clinical outcomes and improving the quality of life of patients suffering from complex forms of cardiovascular diseases.

References

  1. Trybhat T.A., Shut S.V., Borisova Z.O., Sakevych V.D., Goncharova O.O. Some characteristics of the course of coronary heart disease with a comorbid pathology. Med. Ecol. Probl. 2020; 24 (1–2): 8–11. DOI: 10.31718/mep.2020.24.1-2.02
  2. Голухова Е.З. Отчет о научной и лечебной работе Национального медицинского исследовательского центра сердечно- сосудистой хирургии им. А.Н. Бакулева Минздрава России за 2023 год и перспективы развития. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2024; 25 (Спецвыпуск): 5–141. DOI: 10.24022/1810-0694-2024-25S
  3. Zheng W., Huang X., Wang X., Suo M., Yan Y., Gong W., Nie S. Impact of multimorbidity patterns on outcomes and treatment in patients with coronary artery disease. Eur. Heart J. Open. 2024; 4 (2): 1–8. DOI: 10.1093/ehjopen/oeae009
  4. Бузиашвили Ю.И., Асымбекова Э.У., Тугеева Э.Ф., Ахмедов Д.Р., Акилджонов Ф.Р. Мультимодальный подход к ранней верификации кардиотоксичности, ассоциированной с химиотерапией. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2025; 26 (1): 5–12. DOI: 10.24022/1810-0694-2025-26-1-5-12
  5. Forman D.E., Maurer M.S., Boyd C., Brindis R., Salive M.E., Horne F.M., Rich M.W. Multimorbidity in older adults with cardiovascular disease. J. Am. Coll. Cardiol. 2018; 71 (19): 2149–2161. DOI: 10.1016/j.jacc.2018.03.022
  6. Mamalyga M.L. Contemporary problems of cardiovascular disorders at diabetes mellitus. Int. J. Diabetes Endocrinol. 2016; 1 (1): 1–7. DOI: 10.11648/j.ijde.20160101.11
  7. Guzik T.J., Touyz R.M. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension. 2017; 70 (4): 660–667. DOI: 10.1161/HYPERTENSIONAHA.117.07802
  8. Arnett D.K., Blumenthal R.S., Albert M.A., Buroker A.B., Goldberger Z.D., Hahn E.J., Ziaeian B. ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019; 74 (10): e177–e232. DOI: 10.1016/j.jacc.2019.03.010
  9. Low Wang C.C., Hess C.N., Hiatt W.R., Goldfine A.B. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus – mechanisms, management, and clinical considerations. Circulation. 2021; 133 (24): 2459–2502. DOI: 10.1161/CIRCULATIONAHA.116.022194
  10. Libby P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 2006; 83 (2): 456S–460S. DOI: 10.1093/ajcn/83.2.456S
  11. Jia G., Hill M.A., Sowers J.R. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ. Res. 2018; 122 (4): 624–638. DOI: 10.1161/CIRCRESAHA.117.311586
  12. Ginsberg H.N., Packard C.J., Chapman M.J., Borén J., Aguilar-Salinas C.A., Averna M., Tokgözoğlu L. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies – a consensus statement from the European Atherosclerosis Society. Eur. Heart J. 2021; 42 (47): 4791–4806. DOI: 10.1093/eurheartj/ehab551
  13. Libby P., Ridker P.M., Hansson G.K. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011; 473 (7347): 317–325. DOI: 10.1038/nature10146
  14. Tousoulis D., Oikonomou E., Economou E.K., Crea F., Kaski J.C. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur. Heart J. 2016; 37 (22): 1723–1732. DOI: 10.1093/eurheartj/ehv759
  15. Мамалыга М.Л. Сахарный диабет и его роль в формировании сердечно-сосудистых нарушений. М.: Прометей; 2016.
  16. Seferović P.M., Petrie M.C., Filippatos G.S., Anker S.D., Rosano G., Bauersachs J., Coats A.J. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018; 20(5): 853–872. DOI: 10.1002/ejhf.1170
  17. Sarnak M.J., Amann K., Bangalore S., Cavalcante J.L., Charytan D.M., Craig J.C. Chronic kidney disease and coronary artery disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2019; 74 (14): 1823–1838. DOI: 10.1016/j.jacc.2019.08.1017
  18. Lanzer P., Boehm M., Sorribas V., Thiriet M., Janzen J., Zeller T. Medial vascular calcification revisited: review and perspectives. Eur. Heart J. 2014; 35 (23): 1515–1525. DOI: 10.1093/eurheartj/ehu163
  19. Mullens W., Cotter G., Metra M., Milo-Cotter O., Dittrich H.C., Gheorghiade M. Fluid overload in acute heart failure – re-distribution and other mechanisms beyond fluid accumulation. Eur. J. Heart Fail. 2008; 10 (2): 165–169. DOI: 10.1016/j.ejheart.2008.01.007
  20. Xie X., Liu Y., Perkovic V., Li X., Ninomiya T., Hou W., Wang H. Renin-angiotensin system inhibitors and kidney and cardiovascular outcomes in patients with CKD: a Bayesian network meta-analysis of randomized clinical trials. Am. J. Kidney Dis. 2016; 67 (5): 728–741. DOI: 10.1053/j.ajkd.2015.10.011
  21. Tanaka H., Komaba H., Koizumi M., Kakuta T., Fukagawa M. Role of uremic toxins and oxidative stress in the development of chronic kidney disease–mineral and bone disorder. J. Ren. Nutr. 2012; 22 (1): 98–101. DOI: 10.1053/j.jrn.2011.10.031
  22. Rangaswami J., Bhalla V., Blair J.E., Chang T.I., Costa S., Lentine K.L. Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation. 2019; 139 (16): 840–878. DOI: 10.1161/CIR.0000000000000664
  23. Portolés J., Martín L., Broseta J.J., Cases A. Anemia in chronic kidney disease: from pathophysiology and current treatments, to future agents. Front. Med. 2021; 8: 642296. DOI: 10.3389/fmed.2021.642296
  24. Kent B.D., Mitchell P.D., McNicholas W.T. Hypoxemia in patients with COPD: cause, effects, and disease progression. Int. J. Chron. Obstruct. Pulmon. Dis. 2011; 6: 199–208. DOI: 10.2147/COPD.S10611
  25. Tariq S., Ismail D., Thapa M., Goriparthi L., Pradeep R., Khalid K., Jean-Charles G. Chronic obstructive pulmonary disease and its effect on red blood cell indices. Cureus. 2023; 15 (3): e36100. DOI: 10.7759/cureus.36100
  26. Seeger W., Adir Y., Barberà J.A., Champion H., Coghlan J.G., Cottin V., Vachiery J.L. Pulmonary hypertension in chronic lung diseases. J. Am. Coll. Cardiol. 2013; 62 (25): 109–116. DOI: 10.1016/j.jacc.2013.10.036
  27. Campo G., Pavasini R., Malagù M., Mascetti S., Biscaglia S., Ceconi C., Contoli M. Chronic obstructive pulmonary disease and ischemic heart disease comorbidity: overview of mechanisms and clinical management. Cardiovasc. Drugs Ther. 2015; 29: 147–157. DOI: 10.1007/s10557-015-6581-x
  28. Roversi S., Roversi P., Spadafora G., Rossi R., Fabbri L.M. Coronary artery disease concomitant with chronic obstructive pulmonary disease. Eur. J. Clin. Invest. 2014; 44 (1): 93–102. DOI: 10.1111/eci.12181
  29. Ortega-Paz L., Capodanno D., Angiolillo D.J. Canakinumab for secondary prevention of coronary artery disease. Future Cardiol. 2021; 17 (3): 427–442. DOI: 10.2217/fca-2020-0211
  30. Miklós Z., Horváth I. The role of oxidative stress and antioxidants in cardiovascular comorbidities in COPD. Antioxidants. 2023; 12(6): 1196. DOI: 10.3390/antiox12061196
  31. Rangaswami J., Bhalla V., Blair J.E., Chang T.I., Costa S., Lentine K.L. Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation. 2019; 139 (16): 840–878. DOI: 10.1161/CIR.0000000000000664
  32. Portolés J., Martín L., Broseta J.J., Cases A. Anemia in chronic kidney disease: from pathophysiology and current treatments, to future agents. Front. Med. 2021; 8: 642296. DOI: 10.3389/fmed.2021.642296
  33. Kent B.D., Mitchell P.D., McNicholas W.T. Hypoxemia in patients with COPD: cause, effects, and disease progression. Int. J. Chron. Obstruct. Pulmon. Dis. 2011; 6: 199–208. DOI: 10.2147/COPD.S10611
  34. Tariq S., Ismail D., Thapa M., Goriparthi L., Pradeep R., Khalid K., Jean-Charles G. Chronic obstructive pulmonary disease and its effect on red blood cell indices. Cureus. 2023; 15 (3): e36100. DOI: 10.7759/cureus.36100
  35. Seeger W., Adir Y., Barberà J.A., Champion H., Coghlan J.G., Cottin V., Vachiery J.L. Pulmonary hypertension in chronic lung diseases. J. Am. Coll. Cardiol. 2013; 62 (25): 109–116. DOI: 10.1016/j.jacc.2013.10.036
  36. Campo G., Pavasini R., Malagù M., Mascetti S., Biscaglia S., Ceconi C., Contoli M. Chronic obstructive pulmonary disease and ischemic heart disease comorbidity: overview of mechanisms and clinical management. Cardiovasc. Drugs Ther. 2015; 29: 147–157. DOI: 10.1007/s10557-015-6581-x
  37. Roversi S., Roversi P., Spadafora G., Rossi R., Fabbri L.M. Coronary artery disease concomitant with chronic obstructive pulmonary disease. Eur. J. Clin. Invest. 2014; 44 (1): 93–102. DOI: 10.1111/eci.12181
  38. Ortega-Paz L., Capodanno D., Angiolillo D.J. Canakinumab for secondary prevention of coronary artery disease. Future Cardiol. 2021; 17 (3): 427–442. DOI: 10.2217/fca-2020-0211
  39. Miklós Z., Horváth I. The role of oxidative stress and antioxidants in cardiovascular comorbidities in COPD. Antioxidants. 2023; 12(6): 1196. DOI: 10.3390/antiox12061196
  40. Daher A., Dreher M. The bidirectional relationship between chronic obstructive pulmonary disease and coronary artery disease. Herz. 2020; 45 (2): 110–117. DOI: 10.1007/s00059-020-04893-4
  41. Brown T.M., Pack Q.R., Aberegg E., Brewer L.C., Ford Y.R., Forman D.E., Thomas R.J. Core components of cardiac rehabilitation programs: 2024 update: a scientific statement from the American Heart Association and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation. 2024; 150 (18): 328–347. DOI: 10.1161/CIR.0000000000001289
  42. Evdokimov V., Yushchuk E., Evdokimova A., Ivanova S., Sadulaeva I. Efficacy and safety of beta-blockers and prolonged bronchodilators in patients with heart failure with coronary artery disease and moderate to severe COPD. Eur. Heart J. 2020; 41 (2): 946–1156. DOI: 10.1093/ehjci/ehaa946.1156
  43. Jabbar A., Pingitore A., Pearce S.H., Zaman A., Iervasi G., Razvi S. Thyroid hormones and cardiovascular disease. Nat. Rev. Cardiol. 2017; 14 (1): 39–55. DOI: 10.1038/nrcardio.2016.174
  44. Gluvic Z.M., Zafirovic S.S., Obradovic M.M., Sudar-Milovanovic E.M., Rizzo M., Isenovic E.R. Hypothyroidism and risk of cardiovascular disease. Curr. Pharm. Des. 2022; 28 (25): 2065–2072. DOI: 10.2174/1381612828666220620160516
  45. Klein I., Ojamaa K. Thyroid hormone and the cardiovascular system. N. Engl. J. Med. 2001; 344 (7): 501–509. DOI: 10.1056/NEJM200102153440707
  46. Ochs N., Auer R., Bauer D.C., Nanchen D., Gussekloo J., Cornuz J., Rodondi N. Meta-analysis: subclinical thyroid dysfunction and the risk for coronary heart disease and mortality. Ann. Intern. Med. 2008; 148 (11): 832–845. DOI: 10.7326/0003-4819-148-11- 200806030-0022
  47. Udovcic M., Pena R.H., Patham B., Tabatabai L., Kansara A. Hypothyroidism and the heart. Methodist. DeBakey Cardiovasc. J. 2017; 13 (2): 55–59. DOI: 10.14797/mdcj-13-2-55
  48. Bano A., Chaker L., De Maat M.P., Atiq F., Kavousi M., Franco O.H., Peeters R.P. Thyroid function and cardiovascular disease: the mediating role of coagulation factors. J. Clin. Endocrinol. Metab. 2019; 104 (8): 3203–3212. DOI: 10.1210/jc.2019-00072
  49. Jean-Louis G., Zizi F., Clark L.T., Brown C.D., McFarlane S.I. Obstructive sleep apnea and cardiovascular disease: role of the metabolic syndrome and its components. J. Clin. Sleep Med. 2008; 4 (3): 261–272. DOI: 10.5664/jcsm.27191
  50. Mooe T., Franklin K.A., Holmstrom K., Rabben T., Wiklund U. Sleep-disordered breathing and coronary artery disease: long-term prognosis. Am. J. Respir. Crit. Care Med. 2001; 164 (10): 1910–1913. DOI: 10.1164/rccm.2101072
  51. May A.M., Mehra R. Obstructive sleep apnea: role of intermittent hypoxia and inflammation. Semin. Respir. Crit. Care Med. 2014; 35 (5): 531–544. DOI: 10.1055/s-0034-1390023
  52. Jelic S., Lederer D.J., Adams T., Padeletti M., Colombo P.C., Factor P., Le Jemtel T.H. Endothelial repair capacity and apoptosis are inversely related in obstructive sleep apnea. Vasc. Health Risk Manag. 2009; 5: 909–920. DOI: 10.2147/VHRM.S8123
  53. Punjabi N.M., Sorkin J.D., Katzel L.I., Goldberg A.P., Schwartz A.R., Smith P.L. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am. J. Respir. Crit. Care Med. 2002; 165 (5): 677–682. DOI: 10.1164/rccm.2104087
  54. Голухова Е.З., Магомедова Н.М. Слип-апноэ и сердечно-сосудистые риски. Креативная кардиология. 2016; 10 (3): 201–209. DOI: 10.15275/kreatkard.2016.03.03
  55. Guardiola J.J., Matheson P.J., Clavijo L.C., Wilson M.A., Fletcher E.C. Hypercoagulability in patients with obstructive sleep apnea. Sleep Med. 2001; 2 (6): 517–523. DOI: 10.1016/S1389-9457(01)00088-0
  56. Johansson P., Alehagen U., Ulander M., Svanborg E., Dahlström U., Broström A. Sleep disordered breathing in community dwelling elderly: associations with cardiovascular disease, impaired systolic function, and mortality after a six-year follow-up. Sleep Med. 2011; 12 (8): 748–753. DOI: 10.1016/j.sleep.2011.03.012
  57. Somers V.K., Amin R., Abraham W.T., Costa F., Culebras A., Young T. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement. J. Am. Coll. Cardiol. 2008; 52 (8): 686–717. DOI: 10.1016/j.jacc.2008.05.002
  58. Celano C.M., Villegas A.C., Albanese A.M., Gaggin H.K., Huffman J.C. Depression and anxiety in heart failure: a review. Harv. Rev. Psychiatry. 2018; 26 (4): 175–184. DOI: 10.1097/HRP.0000000000000162
  59. Otte C., Gold S.M., Penninx B.W., Pariante C.M., Etkin A., Fava M., Schatzberg A.F. Major depressive disorder. Nat. Rev. Dis. Primers. 2016; 2: 16065. DOI: 10.1038/nrdp.2016.65
  60. Xu L., Zhai X., Shi D., Zhang Y. Depression and coronary heart disease: mechanisms, interventions, and treatments. Front. Psychiatry. 2024; 15: 1328048. DOI: 10.3389/fpsyt.2024.1328048
  61. Pariante C.M. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur. Neuropsychopharmacol. 2017; 27 (6): 554–559. DOI: 10.1016/j.euroneuro.2017.04.001
  62. Jesulola E., Micalos P., Baguley I.J. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model-are we there yet? Behav. Brain Res. 2018; 341: 79–90. DOI: 10.1016/j.bbr.2017.12.025
  63. Голухова Е.З., Асланиди И.П., Шурупова И.В., Шахова А.А., Румянцева М.Г., Трифонова Т.А., Суркова Н.А. Регионарные показатели перфузии и кровотока миокарда по данным количественной позитронно-эмиссионной томографии как индикаторы многососудистого поражения коронарного русла у больных ишемической болезнью сердца. Грудная и сердечно-сосудистая хирургия. 2023; 65 (2): 161–172. DOI: 10.24022/0236-2791-2023-65-2-161-172
  64. Голухова Е.З., Шурупова И.В., Дорофеев А.В., Рычина И.Е., Трифонова Т.А., Болдырева К.М. Характеристика глобального миокардиального кровотока и коронарного резерва по данным динамической стресс-компьютерной томографии у пациентов с ишемической болезнью сердца. Грудная и сердечно-сосудистая хирургия. 2024; 66 (5): 655–667. DOI: 10.24022/0236-2791-2024-66-5-655-667
  65. Köhler C.A., Freitas T.H., Stubbs B., Maes M., Solmi M., Veronese N., Carvalho A.F. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: Systematic review and meta-analysis. Mol. Neurobiol. 2018; 55 (5): 4195–4206. DOI: 10.1007/s12035-017-0632-1
  66. Miller A.H., Raison C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016; 16 (1): 22–34. DOI: 10.1038/nri.2015.5
****
  1. Trybhat T.A., Shut S.V., Borisova Z.O., Sakevych V.D., Goncharova O.O. Some characteristics of the course of coronary heart disease with a comorbid pathology. Med. Ecol. Probl. 2020; 24 (1–2): 8–11. DOI: 10.31718/mep.2020.24.1-2.02
  2. Golukhova E.Z. Report on the scientific and clinical activity of Bakoulev National Medical Research Center for Cardiovascular Surgery for 2023 and development prospects. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2024; 25 (Special Issue): 5–141 (in Russ). DOI: 10.24022/1810-0694-2024-25S
  3. Zheng W., Huang X., Wang X., Suo M., Yan Y., Gong W., Nie S. Impact of multimorbidity patterns on outcomes and treatment in patients with coronary artery disease. Eur. Heart J. Open. 2024; 4 (2): 1–8. DOI: 10.1093/ehjopen/oeae009
  4. Buziashvili Yu.I., Asymbekova E.U., Tugeeva E.F., Akhmedov D.R., Akildzhonov F.R. Multimodal approach to early verification of chemotherapy-associated cardiotoxicity. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2025; 26 (1): 5–12 (in Russ.). DOI: 10.24022/1810-0694-2025-26-1-5-12
  5. Forman D.E., Maurer M.S., Boyd C., Brindis R., Salive M.E., Horne F.M., Rich M.W. Multimorbidity in older adults with cardiovascular disease. J. Am. Coll. Cardiol. 2018; 71 (19): 2149–2161. DOI: 10.1016/j.jacc.2018.03.022
  6. Mamalyga M.L. Contemporary problems of cardiovascular disorders at diabetes mellitus. Int. J. Diabetes Endocrinol. 2016; 1 (1): 1–7. DOI: 10.11648/j.ijde.20160101.11
  7. Guzik T.J., Touyz R.M. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension. 2017; 70 (4): 660–667. DOI: 10.1161/HYPERTENSIONAHA.117.07802
  8. Arnett D.K., Blumenthal R.S., Albert M.A., Buroker A.B., Goldberger Z.D., Hahn E.J., Ziaeian B. ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019; 74 (10): e177–e232. DOI: 10.1016/j.jacc.2019.03.010
  9. Low Wang C.C., Hess C.N., Hiatt W.R., Goldfine A.B. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus – mechanisms, management, and clinical considerations. Circulation. 2021; 133 (24): 2459–2502. DOI: 10.1161/CIRCULATIONAHA.116.022194
  10. Libby P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 2006; 83 (2): 456S–460S. DOI: 10.1093/ajcn/83.2.456S
  11. Jia G., Hill M.A., Sowers J.R. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ. Res. 2018; 122 (4): 624–638. DOI: 10.1161/CIRCRESAHA.117.311586
  12. Ginsberg H.N., Packard C.J., Chapman M.J., Borén J., Aguilar-Salinas C.A., Averna M., Tokgözoğlu L. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies – a consensus statement from the European Atherosclerosis Society. Eur. Heart J. 2021; 42 (47): 4791–4806. DOI: 10.1093/eurheartj/ehab551
  13. Libby P., Ridker P.M., Hansson G.K. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011; 473 (7347): 317–325. DOI: 10.1038/nature10146
  14. Tousoulis D., Oikonomou E., Economou E.K., Crea F., Kaski J.C. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur. Heart J. 2016; 37 (22): 1723–1732. DOI: 10.1093/eurheartj/ehv759
  15. Мамалыга М.Л. Сахарный диабет и его роль в формировании сердечно-сосудистых нарушений. М.: Прометей; 2016.
  16. Seferović P.M., Petrie M.C., Filippatos G.S., Anker S.D., Rosano G., Bauersachs J., Coats A.J. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018; 20(5): 853–872. DOI: 10.1002/ejhf.1170
  17. Sarnak M.J., Amann K., Bangalore S., Cavalcante J.L., Charytan D.M., Craig J.C. Chronic kidney disease and coronary artery disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2019; 74 (14): 1823–1838. DOI: 10.1016/j.jacc.2019.08.1017
  18. Lanzer P., Boehm M., Sorribas V., Thiriet M., Janzen J., Zeller T. Medial vascular calcification revisited: review and perspectives. Eur. Heart J. 2014; 35 (23): 1515–1525. DOI: 10.1093/eurheartj/ehu163
  19. Mullens W., Cotter G., Metra M., Milo-Cotter O., Dittrich H.C., Gheorghiade M. Fluid overload in acute heart failure – re-distribution and other mechanisms beyond fluid accumulation. Eur. J. Heart Fail. 2008; 10 (2): 165–169. DOI: 10.1016/j.ejheart.2008.01.007
  20. Xie X., Liu Y., Perkovic V., Li X., Ninomiya T., Hou W., Wang H. Renin-angiotensin system inhibitors and kidney and cardiovascular outcomes in patients with CKD: a Bayesian network meta-analysis of randomized clinical trials. Am. J. Kidney Dis. 2016; 67 (5): 728–741. DOI: 10.1053/j.ajkd.2015.10.011
  21. Tanaka H., Komaba H., Koizumi M., Kakuta T., Fukagawa M. Role of uremic toxins and oxidative stress in the development of chronic kidney disease–mineral and bone disorder. J. Ren. Nutr. 2012; 22 (1): 98–101. DOI: 10.1053/j.jrn.2011.10.031
  22. Daher A., Dreher M. The bidirectional relationship between chronic obstructive pulmonary disease and coronary artery disease. Herz. 2020; 45 (2): 110–117. DOI: 10.1007/s00059-020-04893-4
  23. Brown T.M., Pack Q.R., Aberegg E., Brewer L.C., Ford Y.R., Forman D.E., Thomas R.J. Core components of cardiac rehabilitation programs: 2024 update: a scientific statement from the American Heart Association and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation. 2024; 150 (18): 328–347. DOI: 10.1161/CIR.0000000000001289
  24. Evdokimov V., Yushchuk E., Evdokimova A., Ivanova S., Sadulaeva I. Efficacy and safety of beta-blockers and prolonged bronchodilators in patients with heart failure with coronary artery disease and moderate to severe COPD. Eur. Heart J. 2020; 41 (2): 946–1156. DOI: 10.1093/ehjci/ehaa946.1156
  25. Jabbar A., Pingitore A., Pearce S.H., Zaman A., Iervasi G., Razvi S. Thyroid hormones and cardiovascular disease. Nat. Rev. Cardiol. 2017; 14 (1): 39–55. DOI: 10.1038/nrcardio.2016.174
  26. Gluvic Z.M., Zafirovic S.S., Obradovic M.M., Sudar-Milovanovic E.M., Rizzo M., Isenovic E.R. Hypothyroidism and risk of cardiovascular disease. Curr. Pharm. Des. 2022; 28 (25): 2065–2072. DOI: 10.2174/1381612828666220620160516
  27. Klein I., Ojamaa K. Thyroid hormone and the cardiovascular system. N. Engl. J. Med. 2001; 344 (7): 501–509. DOI: 10.1056/NEJM200102153440707
  28. Ochs N., Auer R., Bauer D.C., Nanchen D., Gussekloo J., Cornuz J., Rodondi N. Meta-analysis: subclinical thyroid dysfunction and the risk for coronary heart disease and mortality. Ann. Intern. Med. 2008; 148 (11): 832–845. DOI: 10.7326/0003-4819-148-11- 200806030-0022
  29. Udovcic M., Pena R.H., Patham B., Tabatabai L., Kansara A. Hypothyroidism and the heart. Methodist. DeBakey Cardiovasc. J. 2017; 13 (2): 55–59. DOI: 10.14797/mdcj-13-2-55
  30. Bano A., Chaker L., De Maat M.P., Atiq F., Kavousi M., Franco O.H., Peeters R.P. Thyroid function and cardiovascular disease: the mediating role of coagulation factors. J. Clin. Endocrinol. Metab. 2019; 104 (8): 3203–3212. DOI: 10.1210/jc.2019-00072
  31. Jean-Louis G., Zizi F., Clark L.T., Brown C.D., McFarlane S.I. Obstructive sleep apnea and cardiovascular disease: role of the metabolic syndrome and its components. J. Clin. Sleep Med. 2008; 4 (3): 261–272. DOI: 10.5664/jcsm.27191
  32. Mooe T., Franklin K.A., Holmstrom K., Rabben T., Wiklund U. Sleep-disordered breathing and coronary artery disease: long-term prognosis. Am. J. Respir. Crit. Care Med. 2001; 164 (10): 1910–1913. DOI: 10.1164/rccm.2101072
  33. May A.M., Mehra R. Obstructive sleep apnea: role of intermittent hypoxia and inflammation. Semin. Respir. Crit. Care Med. 2014; 35 (5): 531–544. DOI: 10.1055/s-0034-1390023
  34. Jelic S., Lederer D.J., Adams T., Padeletti M., Colombo P.C., Factor P., Le Jemtel T.H. Endothelial repair capacity and apoptosis are inversely related in obstructive sleep apnea. Vasc. Health Risk Manag. 2009; 5: 909–920. DOI: 10.2147/VHRM.S8123
  35. Punjabi N.M., Sorkin J.D., Katzel L.I., Goldberg A.P., Schwartz A.R., Smith P.L. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am. J. Respir. Crit. Care Med. 2002; 165 (5): 677–682. DOI: 10.1164/rccm.2104087
  36. Golukhova E.Z., Magomedova N.M. Obstructive sleep apnea and the risk of cardiovascular disease. Creative Cardiology. 2016; 10 (3): 201–209 (in Russ.) DOI: 10.15275/kreatkard.2016.03.03
  37. Guardiola J.J., Matheson P.J., Clavijo L.C., Wilson M.A., Fletcher E.C. Hypercoagulability in patients with obstructive sleep apnea. Sleep Med. 2001; 2 (6): 517–523. DOI: 10.1016/S1389-9457(01)00088-0
  38. Johansson P., Alehagen U., Ulander M., Svanborg E., Dahlström U., Broström A. Sleep disordered breathing in community dwelling elderly: associations with cardiovascular disease, impaired systolic function, and mortality after a six-year follow-up. Sleep Med. 2011; 12 (8): 748–753. DOI: 10.1016/j.sleep.2011.03.012
  39. Somers V.K., Amin R., Abraham W.T., Costa F., Culebras A., Young T. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement. J. Am. Coll. Cardiol. 2008; 52 (8): 686–717. DOI: 10.1016/j.jacc.2008.05.002
  40. Celano C.M., Villegas A.C., Albanese A.M., Gaggin H.K., Huffman J.C. Depression and anxiety in heart failure: a review. Harv. Rev. Psychiatry. 2018; 26 (4): 175–184. DOI: 10.1097/HRP.0000000000000162
  41. Otte C., Gold S.M., Penninx B.W., Pariante C.M., Etkin A., Fava M., Schatzberg A.F. Major depressive disorder. Nat. Rev. Dis. Primers. 2016; 2: 16065. DOI: 10.1038/nrdp.2016.65
  42. Xu L., Zhai X., Shi D., Zhang Y. Depression and coronary heart disease: mechanisms, interventions, and treatments. Front. Psychiatry. 2024; 15: 1328048. DOI: 10.3389/fpsyt.2024.1328048
  43. Pariante C.M. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur. Neuropsychopharmacol. 2017; 27 (6): 554–559. DOI: 10.1016/j.euroneuro.2017.04.001
  44. Jesulola E., Micalos P., Baguley I.J. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model-are we there yet? Behav. Brain Res. 2018; 341: 79–90. DOI: 10.1016/j.bbr.2017.12.025
  45. Golukhova E.Z., Aslanidis I.P., Shurupova I.V., Shakhova A.A., Rumyantseva M.G., Trifonova T.A., Surkova N.A. Regional myocardial perfusion abnormalities and reducing myocardial blood flow values in predicting multivessel coronary artery disease. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2023; 65 (2): 161–172 (in Russ.). DOI: 10.24022/ 0236-2791-2023-65-2-161-172
  46. Golukhova E.Z., Shurupova I.V., Dorofeev A.V., Rychina I.E., Trifonova T.A., Boldyreva K.M. Characteristics of global myocardial blood flow and coronary reserve according to dynamic computed stress tomography in patients with coronary artery disease. Grudnaya I Serdechno-Sosudistaya Khirurgiya. 2024; 66 (5): 655–667 (in Russ.). DOI: 10.24022/0236-2791-2024-66-5-655-667
  47. Köhler C.A., Freitas T.H., Stubbs B., Maes M., Solmi M., Veronese N., Carvalho A.F. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: Systematic review and meta-analysis. Mol. Neurobiol. 2018; 55 (5): 4195–4206. DOI: 10.1007/s12035-017-0632-1
  48. Miller A.H., Raison C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016; 16 (1): 22–34. DOI: 10.1038/nri.2015.5
  49. Lichtman J.H., Froelicher E.S., Blumenthal J.A., Carney R.M., Doering L.V., Frasure-Smith N., Wulsin L. Depression as a risk factor for poor prognosis among patients with acute coronary syndrome: Systematic review and recommendations. Circulation. 2014; 129(12): 1350–1369. DOI: 10.1161/CIR.0000000000000019

About Authors

Maksim L. Mamalyga, Dr. Med. Sci., Leading Researcher; ORCID

 If you found mistakes, select text and press Alt+A