Authors:
Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation
E-mail: Сведения доступны для зарегистрированных пользователей.
DOI:
UDC: 616.12-007-053.2-089:615.211
Link: Clinical Physiology of Blood Circulaiton. 2019; 16 (2): 85-93
Quote as: Stepanicheva O.A., Rybka M.M. Cardioprotective effects of sevoflurane in pediatric congenital heart disease corrective surgery. Clinical Physiology of Circulation. 2019; 16 (2): 85–93 (in Russ.). DOI: 10.24022/1814-6910-2019-16- 2-85-93
Received / Accepted: January 31, 2019 / February 4, 2019
DownloadCardioprotective effect of volatile anesthetics in cardiac surgery with the use of cardiopulmonary bypass (CPB), has been studied starting from the 20th century and has been fully confirmed in adult patients and applied in clinical practice. Yet, in pediatric cardiac surgery the cardioprotective effect of halogene-containing anesthetics is still being looked into. This article contains the current understanding of the mechanisms of preconditioning and organoprotection, a review of the most significant research papers on cardioprotection effect in adult patients. The author has also described and analyzed the existing studies of anesthetic preconditioning in pediatric congenital heart disease corrective surgery with CPB.
Landoni G., Greco T., Biondi-Zoccai G., Nigro Neto C., Febres D., Pintaudi M. et al. Anaesthetic drugs and survival: a Bayesian network meta-analysis of randomized trials in cardiac surgery. Br. J. Anaesth. 2013; 111: 886–96. DOI:
Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986; 74: 1124–36. DOI:
Kuzuya T., Hoshida S., Yamashita N., Fuji H., Oe H., Hori M. et al. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ. Res. 1993; 72 (6): 1293–9. DOI:
Marber M., Walker D., Yellon D. Ischaemic preconditioning. B.M.J. 1994; 308 (6920): 1–2. DOI:
Zhi-Qing Zhao, Corvera J.S., Halkos M.E., Kerendi F., Ning-Ping Wang, Guyton R.A. et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol. 2003; 285: H579–H588. DOI:
Kharbanda R.K. Cardiac conditioning: a review of evolving strategies to reduce ischemia-reperfusion injury. Heart. 2010; 96: 1179–86. DOI:
Капелько В.И. Эволюция концепции и метаболическая основа ишемической дисфункции миокарда. Кардиология. 2005; 45 (9): 55–61. [Kapel'ko V.I. Evolution of the concept and metabolic basis of ischemic myocardial dysfunction. Cardiology. 2005; 45 (9): 55–61 (in Russ.).]
Бабалян Г.В., Мещеряков А.В. Защита миокарда от ишемических и реперфузионных повреждений. В кн.: Руководство по кардиоанестезиологии. М.: Медицинское информационное агентство; 2005: 88–121. [Babalyan G.V., Meshcheryakov A.V. Myocardial protection against ischemic and reperfusion injuries. In: A guide to cardiac anesthesiology. Moscow: Meditsinskoe Informatsionnoe Agentstvo; 2005: 88–121 (in Russ.).]
Garcia-Dorado D., Theroux P., Munoz R., Alonso J., Elizaga J., Fernandez-Aviles F. et al. Favorable effects of hyperosmotic reperfusion on myocardial edema and infarct size. Am. J. Physiol. 1992; 262: H17–22. DOI:
Ruiz-Meana M., García-Dorado D., González M.A., Barrabés J.A., Soler-Soler J. Effect of osmotic stress on sarcolemmal integrity of isolated cardiomyocytes following transient metabolic inhibition. Cardiovasc. Res. 1995; 30: 64–9. DOI:
Lefer J.W., Granger N. Oxidative stress and cardiac disease. Am. J. Med. 2000; 109 (4): 315–23. DOI:
Barandier C., Tanguy S., Pucheu S., Boucher F., Leiris J. Effect of antioxidant trace elements on the response of cardiac tissue to oxidative stress. An. NY Acad. Sci. 1999; 874: 138–55. DOI:
Gottlieb R., Engler R. Apoptosis in myocardial ischemia-reperfusion. An. NY Acad. Sci. 1999; 874: 412–26. DOI:
Kroemer G., Dallaporta B., Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 1998; 60: 619–52. DOI:
Liest M., Single B., Castoldi A., Kühnle S., Nicotera P. IIntracrllular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med. 1997; 185 (8): 1481–6. DOI:
Батутин А.Е., Гребенчиков О.А., Еременко А.А., Ефремов С.М., Клыпа Т.В., Козлов И.А. и др. Адъювантная кардиопротекция у кардиохирургических больных. М.: ФармЭтика; 2017: 19–20. [Batutin A.I., Grebenchikov O.A., Eremenko A.A., Efremov S.M., Klypa T.V., Kozlov I.A. et al. Adjuvant cardioprotection in capdiosurgical patients. Moscow: FarmEtika; 2017: 19–20 (in Russ.).]
Kalogeris T., Baines C.P., Krenz M., Korthuis R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Molec. Biol. 2012; 298: 229–317. DOI:
Pac-Soo C.K., Mathew H., Ma D. Ischaemic conditioning strategies reduce ischaemia/reperfusion-induced organ injury. Br. J. Anaesth. 2015; 114 (2): 204–16. DOI:
Zangrillo A., Testa V., Aldrovandi V., Tuoro A., Casiraghi G., Cavenago F. et al. Volatile agents for cardiac protection in noncardiac surgery: a randomized controlled study. J. Cardiothorac. Vasc. Anesth. 2011; 25: 902–7. DOI:
Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986; 74: 1124–36. DOI:
Bland J.H., Lowenstein E. Halothane-induced decrease in experimental myocardial ischemia in nonfailing canine heart. Anesthesiology. 1976; 45: 287–93. DOI:
Warltier D.C., al-Wathiqui M.H., Kampine J.P., Schmeling W.T. Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane. Anesthesiology. 1988; 69: 552–65. DOI:
Cason B.A., Gamperl A.K., Slocum R.E., Hickey R.F. Anesthetic-induced preconditioning: previous administration of isoflurane decreases myocardial infarct size in rabbits. Anesthesiology. 1997; 87: 1182–90. DOI:
Pagel P.S., Hundetz J.A. Delayed cardioprotection by inhaled anesthetics. Cardiothorac. Vasc. Anesth. 2011; 25: 1125–40. DOI:
Zaugg M., Lucchinetti E., Uecker M., Pasch T., Schaub M.C. Anaesthetics and cardiac preconditioning – part II: signalling and cytoprotective mechanisms. Br. J. Anaesth. 2003; 91: 566–76. DOI:
De Hert S.G., Turani F., Mathur S., Stowe D.F. Cardioprotection with volatile anesthetics: mechanisms and clinical implications. Anesth. Analg. 2005; 100: 1584–93. DOI:
Hu Z.Y., Liu J. Mechanism of cardiac preconditioning with volatile anaesthetics. Anaesth. Intensive Care. 2009; 37: 532–8. DOI:
Kunst G., Klein A.A. Peri-operative anaesthetic myocardial preconditioning and protection: cellular mechanisms and clinical relevance in cardiac anaesthesia. Anaesthesia. 2015; 70: 467–82. DOI:
Konia M.R., Schaefer S., Liu H. Nuclear factor-[kappa] B inhibition provides additional protection against ischaemia/reperfusion injury in delayed sevoflurane preconditioning. Eur. J. Anaesthesiol. 2009; 26 (6): 496–503. DOI:
Qiao S., Xie H., Wang C., Wu X., Liu H., Liu C. Delayed anesthetic preconditioning protects against myocardial infarction via activation of nuclear factor-κB and upregulation of autophagy. J. Anesth. 2013; 27: 251–60. DOI:
Novalija E., Varadarajan S.G., Camara A.K., Jianzhong An, Chen Q., Matthias L.R. et al. Anesthetic preconditioning: triggering role of reactive oxygen and nitrogen species in isolated hearts. Am. J. Physiol. Heart Circ. Physiol. 2002; 283: H44–52. DOI:
Piriou V., Chiari P., Gateau-Roesch O., Argaud L., Muntean D., Salles D. et al. Desflurane-induced preconditioning alters calcium-induced mitochondrial permeability transition. Anesthesiology. 2004; 100 (3): 581–8. DOI:
De Hert S.G., ten Broecke P.W., Mertens E., Van Sommeren E.W., De Blier I.G., Stockman B.A., Rodrigus I.E. Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology. 2002; 97: 42–9. DOI:
Awad W.I., Shattock M.J., Chambers D.J. Ischemic preconditioning in immature myocardium. Circulation. 1998; 97: 206–13. DOI:
Baker J.E., Holman P., Gross G.J. Preconditioning in immature rabbit hearts. Role of KATP channels. Circulation. 1999; 19; 1249–54. DOI:
Malagon I., Hogenbirk K., van Pelt G., Hazekamp M.G., Bovill J.G. Effect of three different anaesthetic agents on the postoperative production of cardiac troponin T in paediatric cardiac surgery. Br. J. Anaesth. 2005; 94: 805–9. DOI:
Taggart D.P., Hadjinikolas L., Wong K., Yap J., Hooper J., Kemp M. et al. Vulnerability of paediatric myocardium to cardiac surgery. Heart. 1996; 76: 214–7. DOI:
Singh P., Chauhan S., Jain G., Talwar S., Makhija N., Kiran U. Comparison of cardioprotective effects of volatile anesthetics in children undergoing ventricular septal defect closure. World J. Pediatr. Congenit. Heart Surg. 2013; 4 (1): 24–9. DOI:
Bettex D.A., Wanner P.M., Bosshart M., Balmer C., Knirsch W., Dave H. et al. Role of sevoflurane in organ protection during cardiac surgery in children: a randomized controlled trial. Interact. Cardiovasc. Thorac. Surg. 2015; 20 (2): 157–65. DOI:
Mahdavi L., Abdollahi M.H., Entezari A., Salehi E., Hosseini H., Moshtaghioon S.H. et al. The effect of sevoflurane versus propofol anesthesia on troponin I after congenital heart surgery, a randomized clinical trial. Adv. Biomed. Res. 2015; 4: 86. DOI:
Hong-yan Xiong, Yang Liu, Duan-chao Shu, Sheng-li Zhang, Xinhong Qian, Wei-xun Duan et al. Effects of sevoflurane inhalation during cardiopulmonary bypass on pediatric patients: a randomized controlled clinical trial. ASAIO J. 2016; 62 (1): 63–8. DOI: