Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, Director of Bakoulev National Medical Research Center for Cardiovascular Surgery

A clinical evaluation of the effectiveness of pharmacological preconditioning of the myocardium with nitric oxide in operations with cardiopulmonary bypass

Authors: V.V. Pichugin, I.R. Seyfetdinov, M.V. Ryazanov, S.E. Domnin, A.P. Medvedev, A.B. Gamzaev

Privolzhsky Research Medical University, Nizhny Novgorod, 603005, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.


UDC: 616.12-089.8-78

Link: Clinical Physiology of Blood Circulaiton. 2020; 17 (3): 203-211

Quote as: Pichugin V.V., Seyfetdinov I.R., Ryazanov M.V., Domnin S.E., Medvedev A.P., Gamzaev A.B. A clinical evaluation of the effectiveness of pharmacological preconditioning of the myocardium with nitric oxide in operations with cardiopulmonary bypass. Clinical Physiology of Circulation. 2020; 17 (3): 203–11 (in Russ.). DOI: 10.24022/1814-69102020-17-3-203-211

Received / Accepted:  13.04.2020/21.04.2020

Full text:
Subscribe 🔒


Objective. To study the effectiveness of the pharmacological myocardial preconditioning with inhaled NO during operations with cardiopulmonary bypass (CPB).

Material and methods. The study included 90 patients who underwent surgery with CPB. Three groups of patients were created: the first (control, 30 patients); the second (30 patients) – inhaled nitric oxide before and after CPB; the third (30 patients), nitric oxide inhalation was carried out daily for three days before surgery, during surgery – before and after CPB. The level of troponin I (cTnI) was determined daily for 3 days of the preoperative period, as well as 12, 24 and 48 hours after surgery; used clinical and functional indicators.

Results. An increase in the level of cTnI was noted after the 2nd inhalation of NO (by 71.4% of the initial value), in the absence of these changes in the control group. Statistically lower levels of cTnI were observed at 12, 24, and 48 hours after surgery, VIS, a decrease in the length of stay in the ICU and acute cardiac failure rate in patients of the 3rd group.

Conclusions. Inhaled nitric oxide has a clinically pronounced effect of pharmacological myocardial preconditioning. Its effectiveness depends on the duration of its inhalation administration and is most pronounced after a course of three procedures.


  1. Bloch K.D., Ichinose F., Roberts J.D. Jr., Zapol W.M. Inhaled NO as a therapeutic agent. Cardiovasc. Res. 2007; 75: 339–48. DOI: 10.1016/j.cardiores.2007. 04.014 
  2. Hataishi R., Rodrigues A.C., Neilan T.G., Morgan J.G., Buys E., Shiva S. et al. Inhaled nitric oxide decreases infarction size and improves left ventricular function in a murine model of myocardial ischemia-reperfusion injury. Am. J. Physiol. 2006; 291: H379–H384. DOI: 10.1152/ajpheart.01172.2005 
  3. Liu X., Huang Y., Pokreisz P., Vermeersch P., Marsboom G., Swinnen M. et al. Nitric oxide inhalation improves microvascular flow and decreases infarction size after myocardial ischemia and reperfusion. J. Am. Coll. Cardiol. 2007; 50: 808–17. DOI: 10.1016/j.jacc. 2007.04.069 
  4. Nagasaka Y., Fernandez B.O., Garcia-Saura M.F., Petersen B., Ichinose F., Bloch K.D. et al. Brief periods of nitric oxide inhalation protect against myocardial ischemia-reperfusion injury. Anesthesiology. 2008; 109: 675–82. DOI: 10.1097/ALN.0b013e318186316e
  5. Nagasaka Y., Buys E.S., Spagnolli E., Steinbicker A.U., Hayton S.R., Rauwerdink K.M. et al. Soluble guanylate cyclase-alpha 1 is required for the cardioprotective effects of inhaled nitric oxide. Am. J. Physiol.2011; 300: H1477–H1483. DOI: 10.1152/ajpheart.00948.2010 
  6.  Fox-Robichaud A., Payne D., Hasan S.U., Ostrovsky L., Fairhead T., Reinhardt P. et al. Inhaled NO as a viable antiadhesive therapy for ischemia/reperfusion injury of distal microvascular beds. J. Clin. Invest. 1998; 101: 2497–505. DOI: 10.1172/JCI2736 
  7. Barbotin-Larrieu F., Mazmanian M., Baudet B., Detruit H., Chapelier A., Libert J.M. et al. Prevention of ischemia-reperfusion lung injury by inhaled nitric oxide in neonatal piglets. J. Appl. Physiol. 1996; 80: 782–8. DOI: 10.1152/jappl.1996.80.3.782 
  8. Siriussawakul A., Zaky A., Lang J.D. Role of nitric oxide in hepatic ischemia-reperfusion injury. World J. Gastroenterol. 2010; 16: 6079–86. DOI: 10.3748/wjg. v16.i48.6079 
  9. Minamishima S., Kida K., Tokuda K., Wang H., Sips P.Y., Kosugi S. et al. Inhaled nitric oxide improves outcomes after successful cardiopulmonary resuscitation in mice. Circulation. 2011; 124 (15): 1645–53. DOI: 10.1161/CIRCULATIONAHA.111.025395 
  10. Mathru M., Huda R., Solanki D.R., Hays S., Lang J.D. Inhaled nitric oxide attenuates reperfusion inflammatory responses in humans. Anesthesiology. 2007; 106: 275–82. DOI: 10.1097/00000542-200702000-00015 
  11.  Lang J.D. Jr., Teng X., Chumley P., Crawford J.H., Isbell T.S., Chacko B.K. et al. Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation. J. Clin. Invest. 2007; 117: 2583–91. DOI: 10.1172/JCI31892 
  12. Cohen M.V., Downey J.M. Ischemic postconditioning: from receptor to end-effector. Antioxid. Red. Sign. 2011; 14: 821–31. DOI: 10.1089/ars.2010.3318 
  13.  Penna C., Mancardi D., Raimondo S., Geuna S., Pagliaro P. The paradigm of postconditioning to protect the heart. J. Cell Mol. Med. 2008; 12: 435–58. DOI: 10.1111/j.1582-4934.2007.00210.x 
  14.  Piper H.M., Abdallah Y., Schafer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc. Res.2004; 61: 365–71. DOI: 10.1016/ j.cardiores.2003.12.012 
  15. Kohr M.J., Sun J., Aponte A., Wang G., Gucek M., Murphy E. et al. Simultaneous measurement of protein oxidation and S-nitrosylation during preconditioning and ischemia/reperfusion injury with resin-assisted capture. Circ. Res. 2011; 108: 418–26. DOI: 10.1161/ CIRCRESAHA.110.232173 
  16. Burley D.S., Ferdinandy P., Baxter G.F. Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signaling. Br. J. Pharmacol. 2007; 152: 855–69. DOI: 10.1038/ sj.bjp.0707409 
  17. D'Souza S.P., Yellon D.M., Martin C., Schulz R., Heusch G., Onody A. et al. B-type natriuretic peptide limits infarct size in rat isolated hearts via KATP channel opening. Am. J. Physiol. 2003; 284: H1592–H1600. DOI: 10.1152/ajpheart.00902.2002 
  18. Nagasaka Y., Fernandez B.O., Steinbicker A.U., Spagnolli E., Malhotra R., Bloch D.B. et al. Nitric oxide pharmacological preconditioning with inhaled nitric oxide (NO): organ-specific differences in the lifetime of blood and tissue NO metabolites. Nitric. Oxide.2018; 80: 52–60. DOI: 10.1016/j.niox.2018.08.006 
  19. Kloner R.A. Current state of clinical translation of cardioprotective agents for acute myocardial infarction. Circ. Res. 2013; 113 (4): 451–63. DOI: 10.1161/ CIRCRESAHA.112.300627 
  20. Ovize M., Thibault H., Przyklenk K. Myocardial conditioning: opportunities for clinical translation. Circ. Res. 2013; 113 (4): 439–50. DOI: 10.1161/CIRCRESAHA. 113.300764 
  21. Gianetti J., Del Sarto P., Bevilacqua S., Vassalle C., De Filippis R., Kacila M. et al. Supplemental nitric oxide and its effect on myocardial injury and function in patients undergoing cardiac surgery with extracorporeal circulation. J. Thorac. Cardiovasc. Surg. 2004; 127: 44–50. DOI: 10.1016/j.jtcvs.2002.08.001
  22. Checchia P.A., Bronicki R.A., Muenzer J.T., Dixon D., Raithel S., Gandhi S.K., Huddleston C.B. Nitric oxide delivery during cardiopulmonary bypass reduces postoperative morbidity in children – a randomized trial. J. Thorac. Cardiovasc. Surg. 2013; 146: 530–6. DOI: 10.1016/j.jtcvs.2012.09.100
  23. James Ch., Millar J.C., Horton S., Brizard C.P., Molesworth C., Butt W. Nitric oxide administration during paediatric cardiopulmonary bypass: a randomised controlled trial. Intens. Care Med. 2016; 42 (11): 1744–52. DOI: 10.1007/s00134-016-4420-6 
  24. Kamenshchikov N.O., Mandel I.A., Podoksenov Yu.K., Svirko Yu.S., Lomivorotov V.V., Mikheev S.L. et al. Nitric oxide provides myocardial protection when added to the cardiopulmonary bypass circuit during cardiac surgery: randomized trial. J. Thorac. Cardiovasc. Surg. 2019; 157(6): 2328–36. DOI: 10.1016/j.jtcvs.2018.08.117

About Authors

  • Vladimir V. Pichugin, Dr. Med. Sc., Professor of Chair of Anesthesiology, Intensive Care and Emergency Medicine; 
  • Il'giz R. Seyfetdinov, Postgraduate Mikhail V. Ryazanov, Cand. Med. Sc., Associate Professor of Chair of Hospital Surgery n.a. B.A. Korolev Stepan 
  • E. Domnin, Postgraduate; 
  • Aleksandr P. Medvedev, Dr. Med. Sc., Professor of Chair of Hospital Surgery n.a. B.A. Korolev; 
  • Alishir B. Gamzaev, Dr. Med. Sc., Professor of Chair of X-ray Endovascular Diagnostics and Treatment;

 If you found mistakes, select text and press Alt+A