Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, Director of Bakoulev National Medical Research Center for Cardiovascular Surgery

Predictors of diabetes in patients with acute coronary syndrome

Authors: M.A. Alekseeva, E.U. Asymbekova, N.K. Akhmedyarova, O.M. Sherstyannikova, E.F. Tugeeva, I.P. Shuvaev, Yu.I. Buziashvili

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, 121552, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2020-17-3-232-240

UDC: 616.3+616.132.2

Link: Clinical Physiology of Blood Circulaiton. 2020; 17 (3): 232-240

Quote as: Alekseeva M.A., Asymbekova E.U., Akhmedyarova N.K., Sherstyannikova O.M., Tugeeva E.F., Shuvaev I.P., Buziashvili Yu.I. Predictors of diabetes in patients with acute coronary syndrome. Clinical Physiology of Circulation. 2020; 17 (3): 232–40 (in Russ.). DOI: 10.24022/1814-6910-2020-17-3-232-240

Received / Accepted:  06.05.2020/01.06.2020

Full text:
Subscribe 🔒

Abstract

Objective. To study the predictors of diabetes mellitus (DM) in patients with acute coronary syndrome (ACS).

Material and methods. Of the 216 patients with ACS who were admitted to the A.N. Bakoulev National Medical Research Center for Cardiovascular Surgery (191 men, 25 women, age 55.0±10.4 years), 114 had ACS with ST segment elevation (STEMI) and 102 – ACS without raising the ST segment (NSTEMI). At the hospital stage, 1 patient died, in a remote period of 13 patients. The follow-up period was 5.8±1.5 years. To determine the frequency of development of diabetes mellitus and predictors of its development, all patients were divided into 2 groups: "DM +" – 67 patients and "DM–" – 149 patients.

Results. Groups of patients with advanced diabetes mellitus after ACS and without diabetes did not significantly differ in age or gender. STEMI was in 51% of patients with diabetes and in 54% without diabetes. NSTEMI in 49% and 46% of patients, respectively. Upon initial admission to the hospital in the diabetes group 52% of patients had impaired glucose tolerance, and in the non diabetes group – only 8.7% (p=0.00001) and it increased the risk of developing diabetes in patients with ACS in the long term (OR=11.4±0.38; 95% CI 5.4–24.1). A glucose level of ≥6 mmol/L during initial hospitalization with ACS is a prognostic marker for the further development of diabetes mellitus (OR=9.02±0.3; 95% CI 4.5–18.1). Violation of fat metabolism was more noted in the diabetes group than in the non diabetes group – 45% versus 24% (p=0.03). The risk of developing diabetes in patients with increased body weight was higher with a compliance index of χ2=13.72(p=0.004). With a body mass index (BMI) greater than and equal to 35 kg/m2, the OR was 3.1±0.4, 95% CI 1.2–6.2.

Conclusion. In patients with coronary heart disease, in one third of cases, DM develops after a history of ACS. In the development of DM in patients with coronary artery disease, impaired glucose tolerance, obesity and dyslipidemia are important. Predictors of DM in patients with coronary heart disease are impaired glucose tolerance, glycemia ≥6 mmol/L, impaired fat metabolism, BMI ≥35 kg/m2, dyslipidemia, triglycerides ≥2 mmol/L.

References

  1. Cosentino F., Grant P.J., Aboyans V., Bailey C.J., Ceriello A., Delgado V. et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur. Heart J. 2020; 41 (2): 255–323. DOI: 10.1093/eurheartj/ehz486 
  2. Бокерия Л.А., Голухова Е.З., Сигаев И.Ю., Керен М.А. Современные подходы к хирургическому лечению ишемической болезни сердца у больных сахарным диабетом. Вестник Российской академии медицинских наук.2012; 67 (1): 20–6. DOI: 10.15690/vramn. v67i1.105 [Bockeria L.A., Golukhova E.Z., Sigaev I.Yu., Keren M.A. Modern approaches to the surgical treatment of coronary heart disease in patients with diabetes mellitus. Annals of the Russian Academy of Medical Sciences.2012; 67 (1): 20–6 (in Russ.). DOI: 10.15690/vramn.v67i1.105] 
  3. Алексеева М.А., Асымбекова Э.У. Острый коронарный синдром при сахарном диабете. Клиническая физиология кровообращения. 2018; 15 (3): 162–8. DOI: 10.24022/1814-6910-2018-15-3-162-168 [Alekseeva M.A., Asymbekova E.U. Acute coronary syndrome in diabetes mellitus. Clinical Physiology of Circulation.2018; 15 (3): 162–8 (in Russ.). DOI: 10.24022/ 1814-6910-2018-15-3-162-168] 
  4. Lettino M., Andell P., Zeymer U., Widimsky P., Danchin N., Bardaji A. et al. Diabetic patients with acute coronary syndromes in contemporary European registries: characteristics and outcomes. Eur. Heart J. Cardiovasc. Pharmacother. 2017; 3 (4): 198–213. DOI: 10.1093/ehjcvp/pvw049 
  5. Buse J.B., Ginsberg H.N., Bakris G.L., Clark N.G., Costa F., Eckel R. et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation. 2007; 115: 114–26. DOI: 10.1161/CIRCULATIONAHA. 106.179294 
  6. International Diabetes Federation. IDF Diabetes Atlas. 8th Edition. http://diabetesatlas.org/resources/2017atlas.html (дата обращения 14.06.2019). 
  7. Алексеева М.А., Асымбекова Э.У., Ахмедярова Н.К., Шерстянникова О.М., Тугеева Э.Ф., Бузиашвили Ю.И. Особенности течения заболевания иотдаленные результаты лечения у больных с острым коронарным синдромом исахарным диабетом. Клиническая физиология кровообращения. 2019; 16 (4): 281–92. DOI: 10.24022/1814-6910-2019-16-4-281-292 [Alekseeva M.A., Asymbekova E.U., Akhmedyarova N.K., Sherstyannikova O.M., Tugeeva E.F., Buziashvili Yu.I. Peculiarities of the disease discharge and long-term results of treatment in patients with acute coronary syndrome and diabetes mellitus. Сlinical Physiology of Circulation. 2019; 16 (4): 281–92 (in Russ.). DOI: 10.24022/1814-6910-2019-16-4-281-292] 
  8. Ranjit Mohan Anjana, Coimbatore Subramanian Shanthi Rani, Mohan Deepa, Rajendra Pradeepa, Vasudevan Sudha, Haridas Divya Nair et al. Incidence of diabetes and prediabetes and predictors of progression among Asian Indians: 10-year follow-up of the Chennai Urban Rural Epidemiology Study (CURES). Diabetes Care. 2015; 38 (8): 1441–8. DOI: 10.2337/dc14-2814 
  9. Boyko E.J., de Courten M., Zimmet P.Z., Chitson P., Tuomilehto J., Alberti K.G. Features of the metabolic syndrome predict higher risk of diabetes and impaired glucose tolerance: a prospective study in Mauritius. Diabetes Care. 2000; 23: 1242–8. 
  10. Franks P.W., Hanson R.L., Knowler W.C., Moffett C., Enos G., Infante A.M. et al. Childhood predictors of young-onset type 2 diabetes. Diabetes. 2007; 56 (12): 2964–72. DOI: 10.2337/db06-1639 
  11. Mykkänen L., Kuusisto J., Pyörälä K., Laakso M. Cardiovascular disease risk factors as predictors of type 2 (non-insulin-dependent) diabetes mellitus in elderly subjects. Diabetologia. 1993; 36: 553–9. 
  12. Naccashian Z., Hattar-Pollara M., Ho C.A., Ayvazian S.P. Prevalence and predictors of diabetes mellitus and hypertension in Armenian Americans in Los Angeles. Diabet. Educat. 2018; 44 (2): 130–43. DOI: 10.1177/0145721718759981
  13. Seung Jin Han, Hae Jin Kim, Dae Jung Kim, Kwan Woo Lee, Nam H. Cho. Incidence and predictors of type 2 diabetes among Koreans: a 12-year follow up of the Korean genome and epidemiology study. Diabetes Res. Clin. Pract. 2017; 123: 173–80. DOI: 10.1016/ j.diabres.2016.10.004 
  14. Gujral Unjali, Venkat Narayan K.M., Kandula N.R., Kiang Liu, Kanaya A.M. Incidence and predictors of diabetes and prediabetes among South Asians in the United States: The MASALA Study. Diabetes. 2019; 68 (Suppl. 1): 1636-P. DOI: 10.2337/db19-1636-P 
  15. WuS.H., McCormick J.B., Curran J.E., Fisher-Hoch S.P. Transition from pre-diabetes to diabetes and predictors ofrisk in Mexican-Americans. Diabetes Metab. Syndr. Obes. 2017; 10: 491–503. DOI: 10.2147/DMSO.S136368 
  16. Fahimeh Haghighatdoost, Masoud Amini, Awat Feizi, Bijan Iraj. Are body mass index and waist circumference significant predictors of diabetes and prediabetes risk: results from a population based cohort study. World J. Diabetes.2017; 8 (7): 365–73. DOI: 10.4239/wjd.v8.i7. 365 
  17. Lopez P.M., Feldman J., Rummo P.E., Elbel B., Thorpe L. Community predictors of diabetes prevalence and change in burden over time: U.S. Counties, 2003–2012. Diabetes. 2019; 68 (Suppl. 1): 1649-P. DOI: 10.2337/db19-1649-P 
  18. Khambaty T., Callahan Ch.M., Perkins A.J., Stewart M.S.J.C. Depression and anxiety screens as simultaneous predictors of 10-year incidence of diabetes mellitus in older adults in primary care. J. Am. Geriatr. Soc. 2017; 65 (2): 294–300. DOI: 10.1111/jgs.14454 
  19. Takahashi H., Iwahashi N., Kirigaya J., Kataoka S., Minamimoto Y., Gohbara M. et al. Glycemic variability determined with a continuous glucose monitoring system can predict prognosis after acute coronary syndrome. Cardiovasc. Diabetol. 2018; 17 (1): 116. DOI: 10.1186/s12933-018-0761-5 
  20. Gerbaud E., Darier R., Montaudon M., Beauvieux M.C., Coffin-Boutreux C., Coste P. et al. Glycemic variability is a powerful independent predictive factor of midterm major adverse cardiac events in patients with diabetes with acute coronary syndrome. Diabetes Care. 2019; 42 (4): 674–81. DOI: 10.2337/dc18-2047

About Authors

  • Mariya A. Alekseeva, Cardiologist; orcid.org/0000-0002-3736-2991 
  • El'mira U. Asymbekova, Doctor Med. Sc., Leading Researcher; orcid.org/0000-0002-5422-2069 
  • Nazli K. Akhmedyarova, Cand. Med. Sc., Researcher; orcid.org/0000-0001-7157-6312 
  • Ol’ga M. Sherstyannikova, Cand. Med. Sc., Researcher; orcid.org/0000-0002-0340-695Х 
  • El'vina F. Tugeeva, Doctor Med. Sc., Senior Researcher; orcid.org/0000-0003-4591-2161 
  • Igor’ P. Shuvaev, Cand. Med. Sc., Cardiologist; orcid.org/0000-0003-1242-687X 
  • Yuriy I. Buziashvili, Doctor Med. Sc., Professor, Academician of Russian Academy of Sciences, Head of Clinical and Diagnostic Department; orcid.org/0000-0001-7016-7541

 If you found mistakes, select text and press Alt+A