Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Myocardial bridges: optimization of diagnostic approaches. Role of multispiral computed tomography

Authors: Boсkeria L.A., Makarenko V.N., Kurbanova B.G.

Company:
1 Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
2 Republican Specialized Scientific and Practical Medical Center of Cardiology, Tashkent, Republic Uzbekistan

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2022-19-3-221-230

UDC: 616.127-073.756.8

Link: Clinical Physiology of Blood Circulaiton. 2022; 3 (19): 221-230

Quote as: Boсkeria L.A., Makarenko V.N., Kurbanova B.G. Myocardial bridges: optimization of diagnostic approaches. Role of multispiral computed tomography. Clinical Physiology of Circulation. 2022; 19 (3): 221–30 (in Russ.). DOI: 10.24022/1814-6910-2022-19-3-221-230

Received / Accepted:  28.03.2022 / 15.07.2022

Full text:  

Abstract

Objective. The diagnostic efficacy of multislice computed tomography (MSCT) in patients with symptomatic myocardial bridges (MB).

Material and methods. Sixty-seven patients (68.7% of men) with complaints of retrosternal pain underwent a comprehensive study (invasive coronary angiography, MSCT). The age of the patients averaged 51.5 ± 11.2 year. The length and depth of the “tunneled” coronary artery (CA) were determined, and the MB muscle index (MMI) was calculated (length × depth). Dynamic narrowing of the CA was divided according to the degree of compression: <50%; 50–69% and ≥70%.

Results. The length of myocardial bridges averaged 24.95 ± 0.99 mm (from 12 mm to 42.1 mm). The length of the MB in the assessment of MSCT was 24.95 ± 7.18 mm versus 26.2 ± 5.3 mm according to the coronary angiography data. The average difference was 0.93 mm (95% CI -1.8–4.3). According to MSCT data, the thickness of the myocardium in the middle part of the bridges averaged 2.47 ± 0.99 mm (range 1.1–5.2 mm). Myocardial thickness MB 2.49 ± 7.18 mm (from 1.1 mm to 5.2 mm). MBs were classified as: superficial (n = 57) or deep (n =10), short (n = 36) or long (n = 31). FC of angina depends on the depth of the CA (p = 0.04353), from the dynamic narrowing of the CA (p = 0.0378), as well as from the MMI value (p = 0.0258). Threshold values of the spacecraft location depth – 2.1 mm, dynamic narrowing of the CA – 57%, length – 22.7 mm, MMI – 66.3.

Conclusion. Our study showed a high diagnostic efficiency of MSCT in determining the morphometric parameters of the MB and in determining their threshold values as a predictive risk assessment for the development of myocardial ischemia.

References

  1. Porstmann W., Iwig J. Die intramurale koronarie im angiogramm. RöFo. 1960; 92 (2): 129–33. DOI: 10.1055/s-0029-1226492
  2. Gould K.L., Johnson N.P. Myocardial bridges: lessons in clinical coronary pathophysiology. JACC Cardiovasc. Imag. 2015; 8 (6): 705–9. DOI: 10.1016/j.jcmg.2015.02.013
  3. Teragawa H., Oshita C., Ueda T. The myocardial bridge: potential influences on the coronary artery vasculature. Clin. Med. Insig. Cardiol. 2019; 13. DOI: 10.1177/1179546819846493
  4. Corban M.T., Hung O.Y., Eshtehardi P., Rasoul-Arzrumly E., McDaniel M., Mekonnen G. et al. Myocardial bridging: contemporary understanding of pathophysiology with implications for diagnostic and therapeutic strategies. J. Am. Coll. Cardiol. 2014; 63: 2346–55. DOI: 10.1016/j.jacc.2014.01.049
  5. Forsdahl S.H., Rogers I.S., Schnittger I., Tanaka S., Kimura T., Pargaonkar V.S. et al. Myocardial bridges on coronary computed tomography angiography – correlation with intravascular ultrasound and fractional flow reserve. Circ. J. 2017; 81: 1894–900. DOI: 10.1253/circj.cj-17-0284
  6. Aparci M., Yalcin M., Isilak Z., Arslan Z., Ozturk C., Bozlar U., Kardesoglu E. Myocardial bridging in etiology of left ventricular dysfunction in young subjects. J. Am. Coll. Cardiol. 2013; 62 (18): 84–5. DOI: 10.1016/j.jacc.2013.08.267
  7. Ishikawa Y., Akasaka Y., Akishima-Fukasawa Y. Histopathologic profiles of coronary atherosclerosis by myocardial bridge underlying myocardial infarction. Atherosclerosis. 2013; 226: 118–23. DOI: 10.1016/j.atherosclerosis.2012.10.037
  8. Saito Y., Kitahara H., Shoji T., Tokimasa S., Nakayama T., Sugimoto K. Relation between severity of myocardial bridge and vasospasm. Int. J. Cardiol. 2017; 248: 34–8. DOI: 10.1016/j.ijcard.2017.07.002
  9. Zhu С., Wang S., Cui H., Tang B., WangAnn S. Associations of myocardial bridging with adverse cardiac events: a meta-analysis of published observational cohort studies involving 4,556 individuals. Ann. Transl. Med. 2020; 8 (6): 369. DOI: 10.21037/atm.2020.02.24
  10. Zhou F., Tang C.X., Schoepf U.J., Tesche C., Bauer M.J., Brian E. et al. Fractional flow reserve derived from CCTA may have a prognostic role in myocardial bridging. Eur. Radiol. 2019; 29: 3017–26. DOI: 10.1016/j.cjca.2019.08.026
  11. Cullu N., Yeniceri I.O., Ozdemir M.Y., Altunm I., Dogan E. Evaluation of the morphological and clinical features of left anterior descending myocardial bridging with multi-detector computed tomography. Kardiochir. Torakochir. Pol. 2021; 18 (2): 87–91. DOI: 10.5114/kitp.2021.107469 12.
  12. Tesche C., De Cecco C.N., Baumann S., Renker M., McLaurin T.W., Taylor M. et al. Coronary CT angiography-derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling. Radiology. 2018; 288: 64–72. DOI: 10.1148/radiol.2018171291
  13. Röther J., Moshage M., Dey D., Schwemmer C., Tröbs M., Blachutzik F. et al. Comparison of invasively measured FFR with FFR derived from coronary CT angiography for detection of lesion-specific ischemia: results from a PC-based prototype algorithm. J. Cardiovasc. Comput. Tomogr. 2018; 12: 101–7. DOI: 10.1016/j.jcct.2018.01.012
  14. Montalescot G., Sechtem U., Achenbach S., Andreotti F., Arden C., Budaj A. et al. 2013 ESC guidelines on the management of stable coronary artery disease: The Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur. Heart J. 2014; 34 (38): 2949–3003. DOI: 10.1093/eurheartj/eht296
  15. Knuuti J., Wijns W., Saraste A., Capodanno D., Barbato E., Funck-Brentano C. et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020; 41 (3): 407–77. DOI: 10.1093/eurheartj/ehz425
  16. Linde J.J., Kelbæk H., Hansen T.F., Sigvardsen P.E., Torp-Pedersen C., Bech J., Kofoed K. Coronary CT angiography in patients with non–ST-segment elevation acute coronary syndrome. J. Am. Coll. Cardiol. 2020; 75: 453–63. DOI: 10.1016/j.jacc.2019.12.012
  17. Pothineni N.V., Shah N.N., Rochlani Y., Nairooz R., Raina S., Leesar M.A. et al. U.S. trends in inpatient utilization of fractional flow reserve and percutaneous coronary intervention. J. Am. Coll. Cardiol. 2016; 67: 732–3. DOI: 10.1016/j.jacc.2015.11.042
  18. Colombo A., Giannini F. Is it time to replace conventional angiography with coronary computed tomography? Eur. Heart J. 2018; 39 (41): 3699–700. DOI: 10.1093/eurheartj/ehy578
  19. Parikh P., Patel A., Lu B., Senapati A., Mahmarian J., Chang S.M. Cardiac computed tomography for comprehensive coronary assessment: beyond diagnosis of anatomic stenosis. Methodist Debakey Cardiovasc. J. 2020; 16 (2): 77–85. DOI: 10.14797/mdcj16-2-77
  20. Jodocya D., Aglana I., Friedrichb G., Mallouhi A., Pachinger O., Jaschkea W., Feuchtner G.M. Left anterior descending coronary artery myocardial bridging by multislice computed tomography: correlation with clinical finding. Eur. J. Radiol. 2010; 73: 89–95. DOI: 10.1016/j.ejrad.2008.10.00
  21. Noble J., Bourassa M.G., Dyrda I., Petitclerc R. Hemodynamic significance of myocardial bridging and milking effect of the anterior interventricular artery: a mild variant or source of angina? Schweiz Med. Wochenschr. 1976; 106: 1561–3.
  22. Ishii T., Ishikawa Y., Akasaka Y. Myocardial bridge as a structure of “double-edged sword” for the coronary artery. Ann. Vasc. Dis. 2014; 7 (2): 99–108. DOI: 10.3400/avd.ra.14-00037
  23. Hemmati P., Schaff H.V., Dearani J.A., Daly R.C., Lahr B.D., Lerman A. Clinical outcomes of surgical unroofing of myocardial bridging in symptomatic patients. Ann. Thorac. Surg. 2019; 109 (2): 452–7. DOI: 10.1016/+j.athoracsur.2019.07.005
  24. Исмаил-заде И.К., Гребенник В.К., Иванов И.Ю., Абуталимова Н.Р., Заварзина Д.Г., Ишмухаметов Г.И., Гордеев М.Л. Непосредственные результаты лечения пациентов с миокардиальными мостиками коронарных артерий. Вестник хирургии имени И.И. Грекова. 2021; 180 (1): 17–24. DOI: 10.24884/0042-4625-2021-180-1-17-24
  25. Javadzadegan A., Moshfegh A., Mohammadi M., Askarian M., Mohammadi M. Haemodynamic impacts of myocardial bridge length: a congenital heart disease. Comp. Meth. Progr. Biomed. 2019; 175: 25–33. DOI: 10.1016/j.cmpb.2019.03.017
  26. Sharzehee M., Seddighi Y., Sprague E.A., Finol E.A., Han H.C. A hemodynamic comparison of myocardial bridging and coronary atherosclerotic stenosis: a computational model with experimental evaluation. J. Biomech. Eng. 2021; 143 (3): 031013. DOI: 10.1115/1.4049221
  27. Zhang J., Duan F., Zhou Zh., Wang L., Sun Yа., Yang J., Gao W. Compression and clinical symptoms in patients with myocardial bridge and the risk factors of proximal atherosclerosis. Hindawi. Evidence-Bas. Compl. Altern. Med. 2021; 2021. DOI: 10.1155/2021/2087609
  28. Ji Q., Shen J.Q., Xia L.M., Ding W., Wang C.S. Surgical treatment of symptomatic left anterior descending myocardial bridges: myotomy vs. bypass surgery. Surgery Today. 2020; 50: 685–92. DOI: 10.1007/s00595-019-01935-1
  29. Murtaza G., Mukherjee D., Gharacholou S.M., Nanjundappa A., Lavie C.J., Khan A., Shanmugasundaram M., Paul T.K. An updated review on myocardial bridging. Cardiovasc. Revasc. Med. 2020; 21 (9): 1169–79. DOI: 10.1016/j.carrev.2020.02.014
****
  1. Porstmann W., Iwig J. Die intramurale koronarie im angiogramm. RöFo. 1960; 92 (2): 129–33. DOI: 10.1055/s-0029-1226492
  2. Gould K.L., Johnson N.P. Myocardial bridges: lessons in clinical coronary pathophysiology. JACC Cardiovasc. Imag. 2015; 8 (6): 705–9. DOI: 10.1016/j.jcmg.2015.02.013
  3. Teragawa H., Oshita C., Ueda T. The myocardial bridge: potential influences on the coronary artery vasculature. Clin. Med. Insig. Cardiol. 2019; 13. DOI: 10.1177/1179546819846493
  4. Corban M.T., Hung O.Y., Eshtehardi P., Rasoul-Arzrumly E., McDaniel M., Mekonnen G. et al. Myocardial bridging: contemporary understanding of pathophysiology with implications for diagnostic and therapeutic strategies. J. Am. Coll. Cardiol. 2014; 63: 2346–55. DOI: 10.1016/j.jacc.2014.01.049
  5. Forsdahl S.H., Rogers I.S., Schnittger I., Tanaka S., Kimura T., Pargaonkar V.S. et al. Myocardial bridges on coronary computed tomography angiography – correlation with intravascular ultrasound and fractional flow reserve. Circ. J. 2017; 81: 1894–900. DOI: 10.1253/circj.cj-17-0284
  6. Aparci M., Yalcin M., Isilak Z., Arslan Z., Ozturk C., Bozlar U., Kardesoglu E. Myocardial bridging in etiology of left ventricular dysfunction in young subjects. J. Am. Coll. Cardiol. 2013; 62 (18): 84–5. DOI: 10.1016/j.jacc.2013.08.267
  7. Ishikawa Y., Akasaka Y., Akishima-Fukasawa Y. Histopathologic profiles of coronary atherosclerosis by myocardial bridge underlying myocardial infarction. Atherosclerosis. 2013; 226: 118–23. DOI: 10.1016/j.atherosclerosis.2012.10.037
  8. Saito Y., Kitahara H., Shoji T., Tokimasa S., Nakayama T., Sugimoto K. Relation between severity of myocardial bridge and vasospasm. Int. J. Cardiol. 2017; 248: 34–8. DOI: 10.1016/j.ijcard.2017.07.002
  9. Zhu С., Wang S., Cui H., Tang B., WangAnn S. Associations of myocardial bridging with adverse cardiac events: a meta-analysis of published observational cohort studies involving 4,556 individuals. Ann. Transl. Med. 2020; 8 (6): 369. DOI: 10.21037/atm.2020.02.24
  10. Zhou F., Tang C.X., Schoepf U.J., Tesche C., Bauer M.J., Brian E. et al. Fractional flow reserve derived from CCTA may have a prognostic role in myocardial bridging. Eur. Radiol. 2019; 29: 3017–26. DOI: 10.1016/j.cjca.2019.08.026
  11. Cullu N., Yeniceri I.O., Ozdemir M.Y., Altunm I., Dogan E. Evaluation of the morphological and clinical features of left anterior descending myocardial bridging with multi-detector computed tomography. Kardiochir. Torakochir. Pol. 2021; 18 (2): 87–91. DOI: 10.5114/kitp.2021.107469 12.
  12. Tesche C., De Cecco C.N., Baumann S., Renker M., McLaurin T.W., Taylor M. et al. Coronary CT angiography-derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling. Radiology. 2018; 288: 64–72. DOI: 10.1148/radiol.2018171291
  13. Röther J., Moshage M., Dey D., Schwemmer C., Tröbs M., Blachutzik F. et al. Comparison of invasively measured FFR with FFR derived from coronary CT angiography for detection of lesion-specific ischemia: results from a PC-based prototype algorithm. J. Cardiovasc. Comput. Tomogr. 2018; 12: 101–7. DOI: 10.1016/j.jcct.2018.01.012
  14. Montalescot G., Sechtem U., Achenbach S., Andreotti F., Arden C., Budaj A. et al. 2013 ESC guidelines on the management of stable coronary artery disease: The Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur. Heart J. 2014; 34 (38): 2949–3003. DOI: 10.1093/eurheartj/eht296
  15. Knuuti J., Wijns W., Saraste A., Capodanno D., Barbato E., Funck-Brentano C. et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020; 41 (3): 407–77. DOI: 10.1093/eurheartj/ehz425
  16. Linde J.J., Kelbæk H., Hansen T.F., Sigvardsen P.E., Torp-Pedersen C., Bech J., Kofoed K. Coronary CT angiography in patients with non–ST-segment elevation acute coronary syndrome. J. Am. Coll. Cardiol. 2020; 75: 453–63. DOI: 10.1016/j.jacc.2019.12.012
  17. Pothineni N.V., Shah N.N., Rochlani Y., Nairooz R., Raina S., Leesar M.A. et al. U.S. trends in inpatient utilization of fractional flow reserve and percutaneous coronary intervention. J. Am. Coll. Cardiol. 2016; 67: 732–3. DOI: 10.1016/j.jacc.2015.11.042
  18. Colombo A., Giannini F. Is it time to replace conventional angiography with coronary computed tomography? Eur. Heart J. 2018; 39 (41): 3699–700. DOI: 10.1093/eurheartj/ehy578
  19. Parikh P., Patel A., Lu B., Senapati A., Mahmarian J., Chang S.M. Cardiac computed tomography for comprehensive coronary assessment: beyond diagnosis of anatomic stenosis. Methodist Debakey Cardiovasc. J. 2020; 16 (2): 77–85. DOI: 10.14797/mdcj16-2-77
  20. Jodocya D., Aglana I., Friedrichb G., Mallouhi A., Pachinger O., Jaschkea W., Feuchtner G.M. Left anterior descending coronary artery myocardial bridging by multislice computed tomography: correlation with clinical finding. Eur. J. Radiol. 2010; 73: 89–95. DOI: 10.1016/j.ejrad.2008.10.00
  21. Noble J., Bourassa M.G., Dyrda I., Petitclerc R. Hemodynamic significance of myocardial bridging and milking effect of the anterior interventricular artery: a mild variant or source of angina? Schweiz Med. Wochenschr. 1976; 106: 1561–3.
  22. Ishii T., Ishikawa Y., Akasaka Y. Myocardial bridge as a structure of “double-edged sword” for the coronary artery. Ann. Vasc. Dis. 2014; 7 (2): 99–108. DOI: 10.3400/avd.ra.14-00037
  23. Hemmati P., Schaff H.V., Dearani J.A., Daly R.C., Lahr B.D., Lerman A. Clinical outcomes of surgical unroofing of myocardial bridging in symptomatic patients. Ann. Thorac. Surg. 2019; 109 (2): 452–7. DOI: 10.1016/+j.athoracsur.2019.07.005
  24. Исмаил-заде И.К., Гребенник В.К., Иванов И.Ю., Абуталимова Н.Р., Заварзина Д.Г., Ишмухаметов Г.И., Гордеев М.Л. Непосредственные результаты лечения пациентов с миокардиальными мостиками коронарных артерий. Вестник хирургии имени И.И. Грекова. 2021; 180 (1): 17–24. DOI: 10.24884/0042-4625-2021-180-1-17-24
  25. Javadzadegan A., Moshfegh A., Mohammadi M., Askarian M., Mohammadi M. Haemodynamic impacts of myocardial bridge length: a congenital heart disease. Comp. Meth. Progr. Biomed. 2019; 175: 25–33. DOI: 10.1016/j.cmpb.2019.03.017
  26. Sharzehee M., Seddighi Y., Sprague E.A., Finol E.A., Han H.C. A hemodynamic comparison of myocardial bridging and coronary atherosclerotic stenosis: a computational model with experimental evaluation. J. Biomech. Eng. 2021; 143 (3): 031013. DOI: 10.1115/1.4049221
  27. Zhang J., Duan F., Zhou Zh., Wang L., Sun Yа., Yang J., Gao W. Compression and clinical symptoms in patients with myocardial bridge and the risk factors of proximal atherosclerosis. Hindawi. Evidence-Bas. Compl. Altern. Med. 2021; 2021. DOI: 10.1155/2021/2087609
  28. Ji Q., Shen J.Q., Xia L.M., Ding W., Wang C.S. Surgical treatment of symptomatic left anterior descending myocardial bridges: myotomy vs. bypass surgery. Surgery Today. 2020; 50: 685–92. DOI: 10.1007/s00595-019-01935-1
  29. Murtaza G., Mukherjee D., Gharacholou S.M., Nanjundappa A., Lavie C.J., Khan A., Shanmugasundaram M., Paul T.K. An updated review on myocardial bridging. Cardiovasc. Revasc. Med. 2020; 21 (9): 1169–79. DOI: 10.1016/j.carrev.2020.02.014

About Authors

  • Leo A. Bockeria, Dr. Med. Sci., Professor, Academician of RAS and RAMS, President; ORCID
  • Vladimir N. Makarenko, Dr. Med. Sci., Professor, Head of Department of Computed and Magnetic Resonance Imaging; ORCID
  • Веrnаrа G. Kurbanova, Head of Department of Radiation Diagnostics; ORCID

 If you found mistakes, select text and press Alt+A