Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Цереброваскулярная реактивность у юношей с артериальной гипертензией

E-mail: Сведения доступны для зарегистрированных пользователей.

Link: Clinical Physiology of Blood Circulaiton. 2013; (): -

Full text:  

Abstract


Objective.
The ascertainment of peculiarities of cerebrovascular CO2 reactivity in adolescent males with arterial hypertension.
Material and methods. 14 young males with arterial hypertension and 12 healthy young males took part in the research. To estimate cerebrovascular reactivity we analyzed cerebral blood flow velocity in medial cerebral arteries on both sides (transcranial and Doppler monitoring) at rest, at hypercapnia (rebreathing), and hypocapnia (hyperventilation). In the course of monitoring partial pressure of CO2 at the end of expiration was estimated with the help of a capnograph, as well as mean hemodynamic arterial blood pressure was estimated by means of a continuous noninvasive measurement fr om beat to beat.
Results. Мean hemodynamic arterial blood pressure in adolescent males with arterial hypertension was higher than in healthy objects (109.7 (105.3; 112.8) mm Hg and 85.6 (80.7; 90.0) mm Hg correspondingly, p<0.001), wh ereas cerebral blood flow velocity did not differ. Cerebrovascular reactivity for hypocapnia in adolescent males with arterial hypertension was reduced as compared to that in healthy objects (-2.7 (-2.5; -3.1) %/mm Hg, and -3.1 (-2.9; -3.5) %/mm Hg correspondingly, p<0.05). Cerebrovascular reactivity for hypercapnia in adolescent males with arterial hypertension did not differ from that in healthy objects. Mean hemodynamic arterial blood pressure at arterial hypertension correlated more with cerebrovascular reactivity for hypercapnia and hypocapnia as compared to that in healthy objects (R=0.53 and 0.76 at arterial hypertension, R=0.45 and 0.68 in healthy objects, p<0.05).
Conclusion. Cerebrovascular reactivity declines at early stages of arterial hypertension development, and mostly at the expense of reduction of cerebral vessels reaction to hypocapnia. The evaluation of cerebrovascular reactivity for hypocapnia can be more useful to detect initial cerebral hemodynamics disorders at arterial hypertension as compared with general hypercapnic test.

References

Лелюк С.Э., Эшпулатов А.Б., Бозоров Х.А. Состояние цереброваскулярной реактивности при артериальной гипертензии и сочетании артериальной гипертензии с сахарным диабетом 2-го типа по данным ультразвукового исследования // Ультразв. и функц. диагност. 2009. № 5. С. 59.

              <br>Логачева И.В., Иванова И.В., Почепцова Л.В. и др. Состояние мозговой гемодинамики и цереброваскулярной реактивности у больных артериальной гипертонией // Артериальная гипертензия. 2005. Т. 11, № 4. С. 245-248.

              <br>Мазина С. С. Церебральная гемодинамика у подростков и лиц молодого возраста с начальными проявлениями недостаточности кровоснабжения головного мозга при первичной артериальной гипертонии: Дис. ... канд. мед. наук. Ивано- во, 2006. 172 с.

              <br>Ультразвуковая диагностика сосудистых заболеваний: Руководство для врачей. 2-е изд. / Под ред. В.П. Куликова. М.: Фирма «СТРОМ», 2011. - 512 с.

              <br>Aaslid R., Lindegaard K.F., Sorteberg W., Nornes H. Cerebral autoregulation dynamics in humans // Stroke. 1989. Vol. 20. P. 45-52.

              <br>Ainslie P.N., Poulin M.J. Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: Regulation by carbon dioxide // J. Appl. Physiol. 2004. Vol. 97. P. 149-159.

              <br>Chillon J.M., Baumbach G.L. Autoregulation: Arterial and intracranial pressure // Cerebral blood flow and metabolism / Eds L. Edvinsson, D.N. Krause. Philadelphia: Lippincott Williams & Wilkins, 2002. P. 395-412.

              <br>Chillon J.M., Baumbach G.L. Effects of an angiotensin-converting enzyme inhibitor and a beta-blocker on cerebral arteriolar dilatation in hypertensive rats // Hypertension. 2001. Vol. 37. P. 1388-1393.

              <br>Claassen J.A., Levine B.D., Zhang R. Cerebral vasomotor reactivity before and after blood pressure reduction in hypertensive patients // Am. J. Hypertens. 2009. Vol. 22, № 4. P. 384-391.

              <br>Ficzere A., Valikovics A., Fьlesdi B. et al. Cerebrovascular reactivity in hypertensive patients: A transcranial Doppler study // J. Clin. Ultrasound. 1997. Vol. 25, № 7. P. 383-389.

              <br>Heagerty A.M., Aalkjaer C., Bund S.J. et al. Small artery structure in hypertension. Dual processes of remodeling and growth // Hypertension. 1993. Vol. 21. P. 391-397.

              <br>Kirkham F.J., Padayachee T.S., Parsons S. et al. Transcranial measurement of blood velocities in the basal cerebral arteries using pulsed Doppler ultrasound: Velocity as an index of flow // Ultrasound. Med. Biol. 1986. Vol. 12. P. 15-21.

              <br>Lassen N.A. Cerebral blood flow and oxygen consumption in man // Physiol. Rev. 1959. Vol. 39. P. 183-238.

              <br>Levy B.I., Safar M.E. Remodelling of the vascular system in response to hypertension and drug therapy // Clin. Exp. Pharmacol. Physiol. Suppl. 1992. Vol. 19. P. 33-37.

              <br>Lindegaard K.F., Grolimund P., Aaslid R., Nornes H. Evaluation of cerebral AVM's using transcranial Doppler ultrasound // J. Neurosurg. 1986. Vol. 65. P. 335-344.

              <br>Maeda H., Matsumoto M., Handa N. et al. Reactivity of cerebral blood flow to carbon dioxide in hypertensive patients: Eval  uation by the transcranial Doppler method // J. Hypertens. 1994. Vol. 12, № 2. P. 191-197.

              <br>Malatino L.S., Bellofiore S., Costa M.P. et al. Cerebral blood flow velocity after hyperventilation-induced vasoconstriction in hypertensive patients // Stroke. 1992. Vol. 23, № 12. P. 1728-1732.

              <br>Novack P., Shenkin H.A., Bortin L. et al. The effects of carbon dioxide inhalation upon the cerebral blood flow and cerebral oxygen consumption in vascular disease // J. Clin. Invest. 1953. Vol. 32. P. 696-702.

              <br>Richardson D.W., Wasserman A.J., Patterson J.L. Jr. General and regional circulatory responses to change in blood pH and carbon dioxide tension // J. Clin. Invest. 1961. Vol. 40. P. 31-43.

              <br>Settakis G., Pбll D., Molnбr C. et al. Cerebrovascular reactivity in hypertensive and healthy adolescents: TCD with vasodilatory challenge // J. Neuroimaging. 2003. Vol. 13, № 2. P. 106-112.

              <br>Settakis G., Pбll D., Molnбr C. et al. Hyperventilation-induced cerebrovascular reactivity among hypertensive and healthy adolescents // Kidney Blood Press. Res. 2006. Vol. 29, № 5. P. 306-311.

              <br>Shoemaker J.K., Vovk A., Cunningham D.A. Peripheral chemoreceptor contributions to sympathetic and cardiovascular responses during hypercapnia // Can. J. Physiol. Pharmacol. 2002. Vol. 80. P. 1136-1144.

              <br>Strandgaard S., Paulson O.B. Cerebral blood flow in untreated and treated hypertension // Neth. J. Med. 1995. Vol. 47. P. 180-184.

              <br>Tominaga S., Strandgaard S., Uemura K. et al. Cerebrovascular CO2 reactivity in normotensive and hypertensive man // Stroke. 1976. Vol. 7. P. 507-510.

              <br>Wong L.J., Kupferman J.C., Prohovnik I. et al. Hypertension impairs vascular reactivity in the pediatric brain // Stroke. 2011. Vol. 42, № 7. P. 1834-1838.

              

 If you found mistakes, select text and press Alt+A